Search for Light Dark Matter with Spherical Proportional Counters

Ioannis Katsioulas

School of Physics and Astronomy University of Birmingham

> University of Zaragoza Física Teórica/CAPA (online)

> > 25/02/2021

i.katsioulas@bham.ac.uk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 841261 (DarkSphere)

The dark matter conundrum

Observations of F.Zwicky 87 years ago

"The Redshift of Extragalactic Nebulae", published in German in Helvetica Physica Acta in 1933

"In a spiral galaxy, the ratio of dark-to-light matter is about a factor of ten. That's probably a good number for the ratio of our ignorance-to-knowledge. We're out of kindergarten, but only in about third grade." **Vera Rubin** What should it be from astrophysical constraints:

Mostly "Cold"

dark matter

luminous matter

- Non-Baryonic
- "Weakly" interacting
- $\Omega_{\rm DM} = 0.265$
- Stable or τ_x>>τ_u

No Standard Model particle matches the criteria

Dark matter detection

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

"WIMP miracle" ⇒ Relic abundance explained by a massive particle (5 GeV/c² - few TeV/c²) interacting through weak scale interaction with baryonic matter

State of the art for dark matter detectors

Direct detection landscape

25-02-2021

Dark Sector Candidates, Anomalies, and Search Techniques

25-02-2021

Light Dark Matter (LDM) mass region

PDG 2019

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

How does one search the LDM region?

25-02-2021

8

Direct detection landscape

PDG 2019

Light-DM detection particularities - A

Target kinematics

Light Projectile + Light target ⇒ Better kinematic match

Light-DM detection particularities - B Ionization quenching

Quenching factor: fraction of ion kinetic energy dissipated in a medium in the form of ionization electrons and excitation of the atomic and quasi-molecular states.

Light Projectile + Light target ⇒ Less demanding detector threshold

- Light Dark Matter searches with an
- innovative gaseous detector the
- **Spherical Proportional Counter**

NEWS-G collaboration UK, France, Greece, Canada, US

The Spherical Proportional Counter (SPC)

I.Giomataris et al .JINST.2008. P09007

Electric field

Strong radial dependence

$$E(r) = \frac{V_0}{r^2} \frac{r_A r_C}{r_C - r_A} \approx \frac{V_0}{r^2} r_A$$

r_A = anode radius r_c = cathode radius

Detector volume naturally divided in:

- Drift region
- Amplification region
 - Simple design
 - Single readout

Spherical Proportional Counter (SPC)

The "birth" of a detector

Old LEP RF cavities

Spherical gaseous detectors

In the picture: I.Giomataris, G.Charpak

Advantage of spherical geometry

Large detectors - Low threshold

Capacities for a 1 m³ detector in different geometries

15

Lower Capacitance → Lower Electronic Noise → Lower Threshold

25-02-2021

Advantage of spherical geometry

Construction with radiopure materials

Advantages of the spherical geometry

- Lowest surface to volume ratio
- Sustains higher pressure
- Robustness (anode Ø 1 mm 6.3 mm)

Built solely by radiopure materials

- Vessel made of Cu (~tens of kg)
- Rod made of Cu (~hundreds of gr)
- All the rest less < 1 g

Induced Pulses

Pulse Shape Analysis (PSA) parameters

Long Tail Pulse

Rise time & Width ∝ Drift time dispersion

Basic Parameters

- •Baseline
- Noise
- •<u>Amplitude</u> (Pulse Height) •Piso time
- •<u>Rise time</u>
- •<u>Width</u>
- Integral
- •Number of peaks

A lot of information in the pulse shape

Pulse-Shape Discrimination

Rise time (~charge collection time) selections to:

- Distinguish point-like versus extended ionisations
- Fiducialise detector
 - Majority of background from cathode material
 - Can select against near-cathode events
- Reliant on homogeneous electric field and high electric field at large radii (for charge collection)

Detector features

- Large volume read out with a small number of channels
- Single electron threshold due to:
 - Low capacitance
 - High gain
- Radio-pure construction
- Background rejection handles
- Flexible operation
 - Swappable gases-targets
 - Variable pressure choice

Applications include:

- Dark matter searches
- 2β0v decay searches
- CEvNS physics
- Neutron spectroscopy (potentially useful for proton therapy)

NEWS-G at Modane

25-02-2021

NEWS-G at Modane SEDINE detector

Vessel Ø 60cm copper

Ø 6.3mm Si

Sensor

Gas Mixture: Ne+0.7%CH₄ at 3.1 bar (280 g) **Exposure:** 9.6 kg*days (34.1 live-days x 0.28 kg)

First results of NEWS-G with SEDINE (2018)

NEWS-G collaboration, Astropart. Phys. 97, 54 (2018), doi: 10.1016/j.astropartphys.2017.10.009

Limit set on spin independent WIMP coupling with standard assumptions on WIMP velocities, escape velocity and with guenching factor of Neon nuclear recoils in Neon calculated from SRIM

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

(E) CrossMark

Astroparticle Physics 97 (2018) 54-62

NEWS-G moving forward

NEWS-G at SNOLAB

25-02-2021

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

The NEWS-G detector - SNOGLOBE

SNOGlobe at LSM

- Detector already commissioned at LSM
 - Assembled and operated for a month
 - Gases used Ne/CH₄ (1 bar), CH₄ (135 mbar)
 - Sensor and electronics performance tested
 - Backgrounds under study

Shipment December 2019

Moving underground

Unwrapped and baked Sep 2020

Seismic platform installation

SPC inserted in Lead shield

PE shielding installation

SNOGLOBE built Dec 2020

Challenges with the NEWS-G detector

- Charge collection at large radii and high pressure operation
 - Electric field strength
 - Contaminants
- Detector response uniformity
- Background
 - Material purity
- Monitoring and calibration
- Detector simulation/response

Electric field strength in large volume SPCs

Scaling-up

 $v(r), E(r) \sim r_A/r^2$

Single anode glass sensors

<u>I. Katsioulas et al, JINST, 13, 11, P11006, 2018</u> 10.1088/1748-0221/13/11/P11006

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

²⁵⁻⁰²⁻²⁰²¹

Charge collection in low electric field

Magboltz study on the sensitivity to contaminants

25-02-2021

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

Charge collection in low electric field

Magboltz study on the sensitivity to contaminants

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

The multi-anode sensor - ACHINOS

Instead of one => Use multiple anodes set to the same potential !!!

25-02-2021
The multi-anode sensor - ACHINOS

Instead of one => Use multiple anodes set to the same potential !!!

25-02-2021

Electric field configuration with an ACHINOS

Advantages of the ACHINOS sensor

Performance of ACHINOS with DLC coating

3D design

Modules using 3D printing

Performance of ACHINOS with DLC coating

I. Giomataris et al 2020 JINST 15 P11023

Simulations

- Good energy resolution
- High pressure operation (> 2 bar)
- High gain
- Stability
- 2 channel readout

Gas Purification

Ο

0

Contaminants: O₂, H₂O, electronegative gases

SAES MicroTorr Purifier (MC700 902-F)

Incorporated with Residual Gas Analyser

Filtering with: Getter, Oxysorb, Custom filter

Filtering in a gas recirculation system

A powerful UV laser capable of extracting 100s of electrons

- 213 nm laser used to extract primary electrons from wall of SPC
- Photo detector in parallel tags events and monitors laser power
- Laser intensity can be tuned to extract 1 to 100 photo electrons.

Laser calibrations

Detector monitoring

Background in NEWS-G copper

- 4N Aurubis Oxygen Free Copper C10100 (99.99% pure)
 - Spun into two hemispheres
- Copper has no long-lived isotopes

Ar gas

Copper

25-02-2021

- 63 Cu(n, α) 60 Co from fast neutrons mostly cosmic muon spallation
- Contaminants : U and Th decay chain traces
 - Measured for NEWS-G ~10 μ Bq/kg Ο 3.82 d
 - ²¹⁰Pb out of equilibrium 28.5 mBq/kg Ο

222

Rn

Electroplating Copper

The setup during electroplating at LSM

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 988, 1 February 2021, 164844

Copper electroplating for background suppression in the NEWS-G experiment

L. Balogh ⁴, C. Beaufort ^b, A. Brossard ⁴, R. Bunker ⁵, J.-F. Caron ⁴, M. Chapellier⁴, J.-M. Coquillat ⁴, E.C. Corcoran ⁴, S. Crawford ⁴, A. Dastgheibi Fard ⁵, Y. Deng ⁴, K. Dering ⁴, D. Durnford ⁴, G. Gerbier ⁴, I. Giomatris ⁴, G. Giroux ⁴, P. Gorel ^{k, h}, M. (nos ⁶, P. Gors ²), Coulladurb ⁴, E.W. Hoppe ⁴, I. Katisoulas ¹, F. Rily ⁴, P. Knijhs ¹, P. R. L. Woon ⁴, S. Langrock ^h, P. Lautridou ³, R.D. Martin ³, J.-P. Mols ⁴, J.-F. Muraz ^b, X.-F. Navick ¹, T. Neep¹, K. Nikolopoulos ¹, P. O'Brien ⁶, R. Owen ¹, M.-C. Piro ⁶, D. Santos ⁵, G. Sawidis ³, I. Sawidis ¹, F. Vazquez de Sola Fernandez ^a, M. Vidal ³, R. Ward ¹, M. Zampaolo ⁵, NEWS-G Collaboration, S. Alcantar Anguiano ⁶, I.J. Amquist ⁶, M.L. di Vacri ⁶, K. Harouaka ⁵, K. Kobayashi^{-m, m, A}, K.S. Thommasson ⁶

- Using PNNL expertise Strong participation from UoB in electroforming copper
- The inner surface of the detector was electroplated to stop Bremsstrahlung X-rays from ²¹⁰Pb and ²¹⁰Bi β-decays in copper
- 0.5 mm pure copper plated on inner surface at LSM: expected background from ²¹⁰Pb and ²¹⁰Bi under 1 keV reduced by a factor 2.6
- Total background in the experiment expected to be 1.96 dru

P.Knights UoB - Paris-Saclay

Result after plating

- Good surface quality achieved
- Hemispheres electron-beam welded together
- Detector already operating at LSM
- Copper was deposited at a rate of ~36 µm/day
 - Result is promising for possibly a whole detector electroformed underground

Projected sensitivity for SNOGLOBE

- Low threshold
- Strong background rejection handles
- Hydrogen-rich mixtures
- Lower backgrounds

NEWS-G @ Birmingham

I. Katsioulas, P. Knights, J. Mathews I. Manthos, T. Neep, K. Nikolopoulos, R. Ward

- Co-spokesperson (April 2021)
- Physics Run coordination
- Detector instrumentation
- Background suppression techniques
- Detector physics simulations
- Multivariate analysis techniques
- Ionisation quenching studies
- Neutron background studies

Newest additions!

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

Birmingh Gaseous Detectors

Simulating the detector response

Electric field

10³

E-Field Strength [V/cm]

10⁴

10⁻²

 10^{-3}

10

10

 10^{2}

Garfield++

Katsioulas, I. et al, 2017. "Development of a Simulation Framework for Spherical Proportional Counters",arXiv:2002.02718

Simulating the detector response Current [fC/ns] litude [Arb. Units] 5 keV Electrons; Initial Radius = 20 cm — He 72.5% Ne 25.0% CH 2.5% 1.0 bar — Ne 94.0% CH 6.0% 1.0 bar 5 keV Electrons; Initial Radius = 20 cm - He 72.5% Ne 25.0% CH 2.5% 1.0 bar - Ne 94.0% CH 6.0% 1.0 bar 1.0 1.5 2.0 Pulse Integral 1e7 Electronics Pulse treatment 160 175 140 150 120 125 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0 75 Time [ms] Time [ms] 50 25 20 40

Katsioulas, I. et al, 2017. "Development of a Simulation Framework for Spherical Proportional Counters", arXiv:2002.02718

Initial radius [cm]

25-02-2021

Collaboration with Boulby underground laboratory

25-02-2021

Background measurements at Boulby

- Instrumentation R&D at controlled environment
- Neutron flux measurement
 - Thermal neutron Ο
 - Fast neutron \bigcirc
- Including energy information
- Method applicable to all other underground laboratories

K.Nikolopoulo Birmingham

Neutron detection with SPCs

□ Neutron spectroscopy with Spherical Proportional Counter

- Using Nitrogen as gas
- **D** 14 N+n \rightarrow^{14} C+p + 625 keV
- $\label{eq:alpha} \square \quad \ ^{14}\text{N+n}{\rightarrow}^{11}\text{B+}\alpha \ \text{-}\ 159\ keV$
- □ Initially demonstrated: Bougamont, E et al (2017). NIM A, 847, 10–1
 - □ ²⁵²Cf, ²⁴¹Am⁹Be, ambient fast neutrons
 - Thermal neutrons
 - Operation at 0.2-0.5 bar
 - HV reached 6 kV

Goals:

- Operation in high pressure (~5 bar)
 - Minimisation of wall effect
 - Larger target mass Sensitivity
- Calibration with mono-energetic neutrons
- Measurements with thermal and fast neutrons

Resolution

Pulse height (ADU)

Coefficient [1/cm

Neutrons measurements at UoB

 241 Am⁹Be neutron source A = ~10¹⁰ Bq

<u>SPC</u>

- 30 cm ∅
- N_2 gas filling

Multi-anode sensor

- 11 anodes
- 1mm Ø
- Reading in 2 channels

Investigate the capability of the SPC to detect fast neutrons and neutrons thermalized by the graphite.

Neutron measurements with the SPC

Instrumentation developments at UoB

ACHINOS - Achievements

- Fully coated with DLC
- Improved accuracy on anode placement
- Improved spacing

Gas Filter - Aims

- Replace commercial filters
- Reduce Rn emanation
- Maintain efficiency
- Known ingredients
- Cost effective

Copper Oxide H₂O removal

Molecular sieves for O₂ removal

Activation at the Inlet University of Liverpool

> Collaboration with Dr. K.Mavrokoridis Team

ECUME - Electroformed CUprum Manufacturing Experiment

- Underground electroformed Ø140 cm sphere
 - Minimised cosmogenic activation Electroformed in SNOLAB
 - No machining or welding grow sphere directly
- Based on what was achieved for current NEWS-G sphere
 - \circ 36 µm/day \rightarrow ~1 mm/month

Scale hemi-spherical model (PNNL) used for previous electroplating of detector

Current Status:

- R&D bath for prototype at PNNL underway
- Ø30 cm prototype will then be produced
- Full-scale scheduled for late 2021

ECUME - Electroformed CUprum Manufacturing Experiment

	Source	Contamination / flux	Unit	Events rate <1 keV [dru]	Events rate in [1;5] keV [dru]	Total rate [mHz]
Gas mixture	³ H	13	$\mu Bq/kg$	0.05	0.06	0.005
	222Rn	111	µBq/kg	0.05	0.04	0.2
Copper sphere 500 μm electrolyte	210ph	98.5	mBa/kg	1.04	1.01	0.86
	23811	2	uBa/ka	0.0117	0.115	0.028
	232 TL	10	uDa/lea	0.0754	0.0000	0.169
	401/	0.1	D=/let	0.0157	0.0190	0.0000
Roman lead	210Pb	<25	mBa/kg	<0.14	<0.12	0.057
	238U	44.5	uBq/kg	0.142	0.094	0.277
	232Th	9.1	$\mu Bq/kg$	0.0256	0.0161	0.0577
	40K	<1.3	mBq/kg	<0.28	0.23	0.65
Low activity lead	210Pb	4.6	Bq/kg	0.053	0.055	0.17
	238 []	79	µBq/kg	0.17	0.132	0.5
	²³² Th	9	µBq/kg	0.0251	0.0201	0.075
	40K	<1.46	mBq/kg	< 0.35	0.26	0.67
Cavern	Gamma	4.87×10^{-8}	$\gamma/cm^2/s$	0.0084	0.0095	0.00464
	Neutron	4000	neutron/m ² /day	0.0044	0.0004	3.54×10^{-11}
	Muon	0.27	muon/m ² /day	0.00062	0.00044	5.04×10^{-8}
8		Total		1.67	1.54	2.4
Total +	comogen	ie activation of the cop	per ophere	5.00	5.20	5.4
Total + cosmogenic	activation	of the copper sphere an	id 6 months of cooling	2.8	2.0	3.4
Total + cosmogenic activation of the copper sphere and 1 years of cooling				91	10	2.0
Total + cosmogen	e activatio	n of the copper sphere s	and 9 years of cooling	1.0	17	2.0

Removing contributions from copper, lead shielding becomes dominant background

PhD Thesis, Alexis Brossard, 2020

DarkSPHERE: Exploring light Dark Matter with Spherical Proportional Counters electroformed underground

Conceptual parameters:

- Installation at Boubly
- 3 m Ø SPC
- Fully electroformed underground
- Operation with He/iC₄H₁₂ and possibly Xe
- Pressure up to 5 bar
- Large target mass O(100kg)
- Sensitivity down to the v-floor
- Multiphysics platform

Dimensions in mm

Summary

- NEWS-G searches for light DM candidates
 - Lighter targets
 - Improved shielding/materials/procedure
 - Lower energy threshold
- Sensor Development
 - Improved electric field uniformity
 - ACHINOS: electric field in large detectors
- Improved gas quality: Filtering, Recirculation,
- Improved calibration/monitoring: ³⁷Ar, Laser, RGA
- Simulation framework development
- On going work at Boulby!
- Paving the way for future NEWS-G!
- Many physics opportunities!

The SPC in UNIZAR!

Summary

- NEWS-G searches for light DM candidates
 - Lighter targets
 - Improved shielding/materials/procedure
 - Lower energy threshold
- Sensor Development
 - Improved electric field uniformity
 - ACHINOS: electric field in large detectors
- Improved gas quality: Filtering, Recirculation,
- Improved calibration/monitoring: ³⁷Ar, Laser, RGA
- Simulation framework development
- On going work at Boulby!
- Paving the way for future NEWS-G!
- Many physics opportunities!

BACKUP SLIDES

Detector characterisation - In progress

• Measurements with thermal and fast neutrons

BG budget

	Source	Contamination / flux	Unit	Events rate <1 keV [dru]	Events rate in [1;5] keV [dru]	Total rate [mHz]
Gas mixture	³ H	13	$\mu Bq/kg$	0.05	0.06	0.005
	222Rn	111	$\mu Bq/kg$	0.05	0.04	0.2
Copper sphere 500 μm electrolyte	²¹⁰ Pb	28.5	mBq/kg	1.04	1.01	0.86
	238 U	3	µBq/kg	0.0117	0.115	0.028
	232 Th	13	µBq/kg	0.0754	0.0692	0.163
	40K	0.1	mBq/kg	0.0157	0.0186	0.0622
Roman lead	210Pb	<25	mBq/kg	< 0.14	<0.12	0.057
	238 U	44.5	µBq/kg	0.142	0.094	0.277
	232Th	9.1	µBq/kg	0.0256	0.0161	0.0577
	40K	<1.3	mBq/kg	< 0.28	0.23	0.65
Low activity lead	²¹⁰ Pb	4.6	Bq/kg	0.053	0.055	0.17
	2380	79	µBq/kg	0.17	0.132	0.5
	²³² Th	9	µBq/kg	0.0251	0.0201	0.075
	40K	<1.46	mBq/kg	< 0.35	0.26	0.67
Cavern	Gamma	4.87×10^{-8}	$\gamma/cm^2/s$	0.0084	0.0095	0.00464
	Neutron	4000	neutron/m ² /day	0.0044	0.0004	3.54×10^{-11}
	Muon	0.27	muon/m ² /day	0.00062	0.00044	5.04×10^{-8}
1		Total		1.67	1.54	2.4
Total +	- cosmoger	ic activation of the copp	per sphere	5.20	5.20	5.4
Total + cosmogenic	activation	of the copper sphere ar	d 6 months of cooling	2.8	2.5	3.4
Total + cosmogen	ic activatio	on of the copper sphere a	and 1 years of cooling	2.1	1.9	3.0
Total + cosmogeni	ic activatio	on of the copper sphere a	and 2 years of cooling	1.9	1.7	2.9

Results with the prototypes

Giganon, A. et al, 2017. "A Multiball Read-out for the Spherical Proportional Counter.", JINST

Rise time reduction

Single anode

11-anode ACHINOS

Low energy detection capabilities of a large volume SPC

SPC Ø **130 cm** Gas: Ar+2%CH

Detection of fluorescence X-rays $^{241}Am \rightarrow ^{237}Np+^{4}He+ 5.6 MeV$ Lines Al -> 1.45 keV Cu -> 13.93 keV $^{237}Np \rightarrow 13.93 keV(L_{\alpha} 17.60 keV(L_{\beta}))$

-Energy threshold at the single electron level

Detector monitoring

25-02-2021

The laser can be used to monitor the detector response during physics runs

Long-term fluctuations in gain can be caused by temperature changes, O_2 contamination, sensor damage...

Laser monitoring data could even be used to correct for long-term fluctuations

Neutron spectroscopy

- Neutrons: important background in DM searches
 - Identical signature to signal events
 - Stored material activation
- Few measurements at underground laboratories
 - ³He-based detectors extremely expensive

Common targets:
³He + n
$$\rightarrow$$
 ³H + p + 765 keV, σ_{th} = 5330 b
¹⁰B + n \rightarrow ⁷Li* + ⁴He + 2310 keV, σ_{th} = 3840
b
(⁷Li* \rightarrow ⁷Li +480 keV)

71

loannis Kat

Simulation of neutron transport

72
Simulation of neutron transport

<u>Simulation Parameters</u>: Ø vessel 30 cm Nitrogen at 300 mbar Anode Ø 2 mm

73

25-02-2021

Ar37 calibrations and gas fundamentals properties measurement

- Ar37 produced by irradiating Ca power with a high flux of fast neutrons
- Together with laser calibrations, can find W (mean lonization energy) with 1% precision for target gas, and set upper limits on F (Fano factor)

Detector response modeled:

 Primary ionisation (COM-Poisson)

D. Durnford et al, Phys. Rev. D 98, 103013 (2018),

• Avalanche (Polya)

Filtering within a recirculation system

- SAES MicroTorr Purifier (MC700 902-F) then used
- Improved filtering efficiency in large sphere attachment problem 'solved'
- Incorporated into recirculation system with RGA

Background rejection capabilities-A

Fiducialisation

Primary e- drift time dispersion $\sigma(r) \propto (r/r_{sphere})^3$

5.9 keV X-rays line

Background comes from the materials of the vessel

Rise time $\rightarrow \Delta t$ between 90% - 10% of pulse height

25-02-2021

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

Background rejection capabilities-B

Electric field homogeneity

- Ideally, electric field:
 - Purely radial
 - Strength 1/r²
 - Reality more complex, as support structure needed for sensor
 - ο **Ε=Ε(r,θ)**
 - Non-uniform detector
 - Response
 - Improved field uniformity by adding correction electrode

The resistive glass electrode

Provides

- Spark quenching
- Charge evacuation

Advantages

- Simple
- Symmetric
- Robust
- Low material budget

Material properties

- Soda-lime glass
- $\rho = 5.05 \times 10^{10} \,\Omega$ · cm
- d = 2.1-2.25 g/cm3
- A = 14.48 mBq/g

I. Katsioulas et al, JINST, 13, 11, P11006, 2018 10.1088/1748-0221/13/11/P11006

25-02-2021

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar

Performance

25-02-2021

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | UNIZAR seminar